Bruger- og servicemanual
Cardiac Science Powerheart® G3 Elite
Automatisk ekstern defibrillator
Oplysningerne i dette dokument kan ændres uden forudgående varsel. Navne og data i eksemplerne er opdigtede, medmindre andet er angivet.

Varemærkeoplysninger

Cardiac Science, Shielded Heart-logoet, Powerheart STAR Intellisense, Rescue Ready, RescueCoach, RHYTHMx og Smartgauge er varemærker eller registrerede varemærker tilhørende Cardiac Science Corporation. Alle andre produkt- og firmanavne er varemærker eller registrerede varemærker tilhørende deres respektive firmaer.

Copyright © 2019 Cardiac Science Corporation. Alle rettigheder forbeholdes.

Patenter

Amerikanske og udenlandske patenter.
Se www.cardiacscience.com/patents for en komplet liste.

Cardiac Science Corporation
N7 W22025 Johnson Drive
Waukesha, WI 53186 USA
(800) 426-0337
(262) 953-3500
techsupport@cardiacscience.com
www.cardiacscience.com
Indhold

Produktoplysninger og sikkerhed 1

- Kontaktoplysninger .. 1-2
- Produktmodeller ... 1-3
- Produktreferencer .. 1-3
- Garantioplysninger .. 1-3
- Sikkerhedsbetegnelser og definitioner ... 1-3
- Sikkerhedsadvarselsbeskrivelser .. 1-4
- Symbolbeskrivelser .. 1-8
- Overholdelse af standarder for elektromagnetisk emission 1-11
 - Retningslinjer og producentens erklæring – elektromagnetisk emission 1-11
 - Retningslinjer og producentens erklæring – elektromagnetisk immunitet 1-12
 - Anbefalet adskillelsesafstand mellem bærbart og mobilt radiokommunikationsudstyr og AED’en ... 1-14

Introduktion 2

- Beskrivelse af AED .. 2-1
- Indikationer for brug ... 2-2
- Kontraindikationer .. 2-3
- Enhedens mulige bivirkninger .. 2-4
- Oversigt over kliniske undersøgelser ... 2-5
- RHYTHMx® AED EKG-analysealgoritme .. 2-7
- Genoplivningsprotokol ... 2-9
- STAR® bifasiske kurve ... 2-9
- STAR® bifasiske energiprotokoller til Powerheart® G3 AED’er 2-10
- Krav til brugerens uddannelse .. 2-12

Kom godt i gang 3

- AED-indikatorer .. 3-2
- Indstilling af AED’ens interne ur .. 3-6
- RescueCoach™ stemmemeddelelser og tekstdisplay ... 3-7

Datahåndtering 4

- Optagelse af genoplivningsdata .. 4-1
- Gennemsyn af genoplivningsdata .. 4-2
Fejlfinding og vedligeholdelse 5
Selvtest..5-1
Fejlfindingstabel for indikatorer ...5-3
Planlagt vedligeholdelse ...5-4
Autoriseret reparationsservice ..5-6
Ofte stillede spørgsmål ...5-7

Tekniske data 6
Parametre...6-1
Dæmpede energiværdier med Cardiac Science
forudinstallerede (voksen) elektroder og STAR® bifasisk kurve.................................6-7
Dæmpede energiværdier med pædiatriske elektroder fra
Cardiac Science og STAR bifasisk kurve ...6-10
1 Produktoplysninger og -sikkerhed

Indhold
◆ Kontaktoplysninger 1-2
◆ Produktmodeller 1-3
◆ Produktreferencer 1-3
◆ Garantioplysninger 1-3
◆ Sikkerhedsbetegnelser og definitioner 1-3
◆ Sikkerhedsadvarselsbeskrivelser 1-4
◆ Symbolbeskrivelser 1-8
◆ Overholdelse af standarder for elektromagnetisk emission 1-11
 Retningslinjer og producentens erklæring – elektromagnetisk emission 1-11
 Retningslinjer og producentens erklæring – elektromagnetisk emission 1-12
Anbefalet adskillelsesafstand mellem bærbart og mobilt radiokommunikationsudstyr og HeartStart 1-14

Før du betjener Powerheart® G3 AED:
◆ Gør dig bekendt med de forskellige sikkerhedsadvarsler i dette afsnit.
◆ Sikkerhedsadvarsler identificerer mulige farer via symboler og ord for at forklare, hvad der potentielt kan skade dig, patienten eller Powerheart® G3 AED.
Kontaktoplysninger

I USA:

For at bestille yderligere Powerheart® G3 AED’er eller tilbehør skal du kontakte kundeservice hos Cardiac Science:

- Gratisnummer (USA): 1.800.426.0337 (valgmulighed 2)
- Telefonnummer: +1.262.953.3500 (valgmulighed 2)
- Fax: +1.262.953.3499
- E-mail: care@cardiacscience.com

Cardiac Science yder 24 timers telefonisk teknisk support.

Du kan også kontakte Teknisk support via fax eller e-mail

Det koster ikke kunden noget at ringe til teknisk support.

Du bedes have serie- og modelnummeret klar, når du kontakter teknisk support. (Serie- og modelnumre er placeret på undersiden af AED’en).

- Gratisnummer (USA): 1.800.426.0337 (valgmulighed 1)
- Telefonnummer: +1.262.953.3500 (valgmulighed 1)
- Fax: +1.262.798.5236
- E-mail: techsupport@cardiacscience.com
- Websted: www.cardiacscience.com

Uden for USA:

Kontakt din lokale repræsentant for Cardiac Science for at bestille udstyr eller tilbehør og for at få teknisk support til AED-produkter.
Produktmodeller

Produktreferencer

Med henblik på enkle og tydelige instruktioner i denne manual skal du bemærke de produktreferencer, der anvendes. Funktioner, specifikationer, betjeningsforskrifter og vedligeholdelse, som er fælles for produktmodellerne, betegnes på følgende måde:

Garantioplysninger

Sikkerhedsbetegnelser og definitioner

Nedenstående symboler angiver kategorier for potentielle farer. Definitionen af hver kategori er som følger:

FARE
Denne advarsel angiver farer, som vil forårsage alvorlig personskade eller dødsfald.

ADVARSEL
Denne advarsel angiver farer, som kan forårsage alvorlig personskade eller dødsfald.

OBS
Denne advarsel angiver farer, som kan forårsage mindre personskade, produktskade eller materiel skade.
Sikkerhedsadvarselsbeskrivelser

OBS: Læs denne bruger- og servicemanual grundigt.

FARE! Brand og eksplosionsfare

Denne advarsel angiver farer, som kan forårsage alvorlig personskade eller dødsfald.

- I nærvær af brandbare gasser
- I nærvær af koncentreret ilt
- I et trykkammer

ADVARSEL! Risiko for elektrisk stød og mulig beskadigelse af udstyr

Strøm fra defibrilleringsstød, som løber gennem uønskede baner, udgør potentielt en alvorlig fare for elektrisk stød. For at undgå denne fare under defibrillering skal følgende overholdes:

- Brug ikke i vand eller regnvejr. Flyt patienten til et tørt område.
- Rør ikke ved patienten, medmindre HLR angives.
- Rør ikke ved metalgenstande i kontakt med patienten.
- Defibrilleringselektroderne må ikke berøre andre elektroder eller metaldele i kontakt med patienten.
- Kobl alt ikke-defibrillatorsikkert udstyr fra patienten før defibrillering.

ADVARSEL! Batteriet kan ikke genoplades

Forsøg ikke at genoplade batteriet. Ethvert forsøg at genoplade batteriet kan medføre eksplosions- eller brandfare.

ADVARSEL! Genbrug ikke elektroder.

ADVARSEL! Reduceret behandlingseffekt.
Hvis det blå plastikstykke ikke fjernes helt, kan det påvirke effekten af behandlingen.

Obs! Kun til kortvarig brug. Ikke til pacing.
Åbn IKKE pakken med defibrilleringselektroder, før de skal anvendes. Kun til kortvarig brug.
Elektroderne må ikke benyttes til pacing.

Obs! Beskadigelse af udstyr.
Træk ikke i ledningen for at adskille elektroderne fra det blå plastikstykke.
Bemærk: Elektroderne skal opbevares ved stuetemperatur.
Bemærk: Elektroderne er beregnet til voksne.

ADVARSEL! Fejlfunktion af udstyr.
Hvis AED'en holder op med at fungere under et genoplivningsforsøg, skal du fortsætte HLR efter behov, indtil redningspersonalet ankommer.

ADVARSEL! Mulig følsomhed for radiosignaler (RF)
Brug ikke AED'en på steder, hvor stærke elektromagnetiske felter eller RF-felter kan forventes at forekomme.
Se kapitel 1: Overholdelse af standarder for elektromagnetisk emission for yderligere oplysninger.

ADVARSEL! Mulig interferens med implanteret pacemaker
Behandlingen må ikke forsinkes for patienter med implanterede pacemakere, og defibrillering skal forsøges, hvis patienten er bevidstløs og ikke trækker vejret. AED'en har pacemakerdetektion og afvisning. Ved visse pacemakere vil AED'en muligvis ikke anbefale defibrilleringsstød. (Cummins, R., ed., Advanced Cardiac Life Support; AHA (1994): Ch. 4)
Ved anbringelse af elektroder:
• Placer ikke elektroderne direkte over en implanteret enhed.
• Elektroden skal anbringes mindst 2,5 cm fra en eventuel implanteret enhed.

ADVARSEL! Elektromagnetisk kompatibilitet
Brug af tilbehør eller andre kabler end de angivne, med undtagelse af tilbehør og kabler, som sælges af Cardiac Science Corporation som reservedele til interne komponenter, kan medføre øget elektromagnetisk udstråling eller forringet elektromagnetisk immunitet for AED'en.
ADVARSEL! Forkert placering af udstyret
Placer AED’en væk fra andet udstyr. Hvis det er nødvendigt at anvende AED’en ved siden af eller stablet med andet udstyr, skal du observere AED’en for at sikre normal drift.

OBS: Begrænset brug
I henhold til amerikansk lovgivning må dette produkt kun sælges af eller efter anvisning fra en læge, som er godkendt i henhold til lovgivningen i den stat, hvor vedkommende praktiserer.

OBS: Lithiumsvovldioxid-batteri
Indhold under tryk: Batteriet må ikke genoplades, kortsluttes, punkteres, deformeres eller udsættes for temperaturer over 65 °C (149 °F). Fjern batteriet, når det er afladet.

OBS: Bortskaffelse af batteri
Lithiumbatteriet skal genbruges eller kasseres i overensstemmelse med alle føderale, statslige og lokale love. For at undgå brand- og eksplosionsfare må batteriet ikke brændes eller antændes.

OBS: Brug kun udstyr, som er godkendt af Cardiac Science
Brug af batterier, elektroder, kabler eller ekstraudstyr, som ikke er godkendt af Cardiac Science, kan forårsage fejlfunktion af AED’en under genoplivning.

OBS: Mulig forkert AED-ydelse
Brug af elektroder, som er beskadiget eller udløbet, kan medføre forkert AED-ydelse.

OBS: Serielt kommunikationskabel
Brug ikke det serielle kommunikationskabel under genoplivning. Hvis det serielle kommunikationskabel er forbundet med AED’ens kommssport under genoplivning, udsender enheden stemmede vokse "Fjern kabel for at fortsætte genoplivning", indtil du fjerner kablet fra porten.

OBS: Sådan flyttes patienten under en genoplivning
OBS: Systemerklæring
Udstyr, der er tilsluttet til analoge og digitale grænseflader skal være certificeret i henhold til de respektive IEC-standarder (dvs. IEC 60950 for databehandlingsudstyr og IEC 60601-1 for medicinsk udstyr).

Derudover skal alle konfigurationer overholde systemstandarden IEC 60601-1-1. Alle, der forbinder andet udstyr til signalindgangsdelen eller signaludgangsdelen, konfigurerer et medicinsk system og er derfor ansvarlige for at sikre, at systemet overholder kravene i systemstandarden EN 60601-1-1.

OBS: Defekt udstyr
Bærbart og mobilt kommunikationsudstyr kan påvirke AED’en. Overhold altid de anbefalede adskillelsesafstande som angivet i EMC-deklarationstabellerne.

OBS: Defekt udstyr
AED’en kræver særlige forholdsregler vedrørende EMC. Brug af AED’en iflg. retningslinjerne i EMC-deklarationstabellerne.

OBS: Opbevaring og anvendelse på fly
Opbevaring og anvendelse på fly er begrænset til kabinen.
Symbolbeskrivelser

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Beskrivelse</th>
<th>Symbol</th>
<th>Beskrivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>!</td>
<td>Obs! Konsulter den medfølgende dokumentation.</td>
<td></td>
<td>Yderligere oplysninger findes i AED’ens bruger- og servicemanual.</td>
</tr>
<tr>
<td>⚡</td>
<td>Farlig spænding: Defibrillatorens effekt har en høj spænding og kan udgøre en fare for elektrisk stød.</td>
<td>⚠</td>
<td>Type BF anvendt del.</td>
</tr>
<tr>
<td>🌈IP24</td>
<td>AED’en er beskyttet imod effekterne af vandsprøjt i overensstemmelse med IEC 60529.</td>
<td>🚫</td>
<td>Batteriet må ikke genoplades.</td>
</tr>
</tbody>
</table>
Produktoplysninger og -sikkerhed

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Beskrivelse</th>
<th>Symbol</th>
<th>Beskrivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Når STØD-indikatoren lyser, skal du trykke du på denne knap for at afgive et defibrilleringsstød.</td>
<td></td>
<td>Seriel kommunikationsport</td>
</tr>
<tr>
<td></td>
<td>En rød indikator med et SORT X betyder, at AED’en kræver brugerens opmærksomhed eller vedligeholdelse, og at den ikke er klar til genoplivning.</td>
<td></td>
<td>En grøn indikator uden et SORT X betyder, at AED’en er klar til genoplivning.</td>
</tr>
<tr>
<td></td>
<td>Produktionsdato: år og måned.</td>
<td></td>
<td>Dato for fabrikkens recertifikation (R): år og måned.</td>
</tr>
<tr>
<td></td>
<td>Latex-fri. Ikke fremstillet med naturgummilatex.</td>
<td></td>
<td>Til engangsbrug Må kun bruges på én patient.</td>
</tr>
<tr>
<td></td>
<td>Riv her for at åbne.</td>
<td></td>
<td>Adskil én elektrode fra det blå plastikstykke ved at afrive den fra hjørnet med ledningen.</td>
</tr>
<tr>
<td></td>
<td>Elektrodeplaceringer på patientens brystkasse.</td>
<td></td>
<td>Må kun anvendes af eller efter anvisning fra en læge eller en person, som er godkendt iht. statslig lovgivning.</td>
</tr>
<tr>
<td></td>
<td>Batteriet må ikke brændes eller udsættes for åben ild.</td>
<td></td>
<td>Lotnummer</td>
</tr>
<tr>
<td></td>
<td>Øvre og nedre temperaturgrænser ved brug.</td>
<td></td>
<td>Brug elektroderne før denne dato.</td>
</tr>
<tr>
<td></td>
<td>Serienummer</td>
<td></td>
<td>Enhedens modelnummer; batteriets modelnummer</td>
</tr>
</tbody>
</table>

Powerheart® AED G3 Elite 9790A og 9790E
70-01933-14 B
<table>
<thead>
<tr>
<th>Symbol</th>
<th>Beskrivelse</th>
<th>Symbol</th>
<th>Beskrivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>LiSO₂</td>
<td>Lithiumsvovldioxid</td>
<td>EC REP</td>
<td>Autoriseret repræsentant i EU</td>
</tr>
</tbody>
</table>

CE-mærket: Dette udstyr overholder de væsentlige krav i direktivet for medicinsk udstyr 93/42/EØF.

Pap skal genanvendes i henhold til lokal lovgivning.

Bortskaffes korrekt i henhold til de nationale, regionale og lokale vedtægter.
Overholdelse af standarder for elektromagnetisk emission

Retningslinjer og producentens erklæring – elektromagnetisk emission

AED'en er beregnet til brug i et elektromagnetisk miljø som angivet herunder. Kunden eller brugeren af AED'en skal sikre, at den bruges i et sådant miljø.

<table>
<thead>
<tr>
<th>Emissionstest</th>
<th>Compliance</th>
<th>Elektromagnetisk miljø – retningslinjer</th>
</tr>
</thead>
<tbody>
<tr>
<td>RF-udstråling</td>
<td>Gruppe 1</td>
<td>AED 'en benytter kun RF-energi til interne formål. Derfor er dens udstråling af radiobølger (RF) meget begrænset, og vil sandsynligvis ikke medføre interferens i elektronisk udstyr i nærheden.</td>
</tr>
<tr>
<td>CISPR 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF-udstråling</td>
<td>Klasse B</td>
<td>AED'en er velegnet til tilslutning til alle strømkilder, inklusive i private hjem og strømkilder, der er direkte forbundet til lavspændings forsyningsnet, som forsyner bygninger, der benyttes til beboelse.</td>
</tr>
<tr>
<td>CISPR 11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Retningslinjer og producentens erklæring – Elektromagnetisk immunitet

AED’en er beregnet til brug i et elektromagnetisk miljø som angivet herunder. Kunden eller brugeren af AED’en skal sikre, at den bruges i et sådant miljø.

<table>
<thead>
<tr>
<th>Immunitetstest</th>
<th>IEC 60601-testniveau</th>
<th>Overensstemmelsesniveau</th>
<th>Elektromagnetisk miljø – retningslinjer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektrostatisk udladning (ESD)</td>
<td>±6 kV kontakt</td>
<td>±6 kV kontakt</td>
<td>Gulve bør være af træ, beton eller keramiske fliser. Hvis gulvene er dækket med syntetisk materiale, bør den relative fugtighed være mindst 30 %</td>
</tr>
<tr>
<td>IEC 61000-4-2</td>
<td>±8 kV luft</td>
<td>±8 kV luft</td>
<td></td>
</tr>
<tr>
<td>Effektfrekvensmagnetfelt (50/60 Hz)</td>
<td>3 A/m</td>
<td>80 A/m</td>
<td>Strømfrekvensmagnetfelter bør være på et niveau, som ikke er højere end dem, der er karakteristiske for typisk tung industri og elkraftværker og kontrolrummet på transformerstationer.</td>
</tr>
<tr>
<td>IEC 61000-4-8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bemærk: U_t er vekselstrømsnetspændingen, inden testniveauet anvendes.

<table>
<thead>
<tr>
<th>Ledet radiofrekvens</th>
<th>3 Vrms</th>
<th>Ikke relevant</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEC 61000-4-6</td>
<td>150 kHz til 80 MHz uden for ISM-båndene<sup>a</sup></td>
<td>Ikke relevant</td>
</tr>
<tr>
<td></td>
<td>10 Vrms</td>
<td></td>
</tr>
<tr>
<td></td>
<td>150 kHz til 80 MHz i ISM-båndene<sup>a</sup></td>
<td></td>
</tr>
</tbody>
</table>
Udstrålet RF

IEC 60601-testniveau

Overensstemmelsesniveau

Elektromagnetisk miljø – retningslinjer

<table>
<thead>
<tr>
<th>Immunitetstest</th>
<th>IEC 60601-testniveau</th>
<th>Overensstemmelsesniveau</th>
<th>Elektromagnetisk miljø – retningslinjer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Udstrålet RF</td>
<td>10 V/m</td>
<td>10 V/m</td>
<td>Bærbart og mobilt radiokommunikation-sudstyr bør ikke anvendes tættere på nogen del af AED’en, inkl. kabler, end den anbefalede adskillelsesafstand, der er beregnet ud fra den faktor, der er gældende for transmitterens frekvens. Anbefalet adskillelsesafstand</td>
</tr>
<tr>
<td>IEC 61000-4-3</td>
<td>80 MHz til 2,5 GHz</td>
<td></td>
<td>d = 1,2 \sqrt{P} \quad 80 MHz til 800 MHz</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>d = 2,3 \sqrt{P} \quad 800 MHz til 2,5 GHz</td>
</tr>
</tbody>
</table>

hvor "P" er den maksimale udgangseffekt for transmitteren i watt (W) i henhold til producenten af transmitteren, og d er den anbefalede adskillelsesafstand i meter (m)\(^b\).

Feltstyrker fra faste radiosendere i henhold til en elektromagnetisk pladsundersøgelse bør være lavere end overensstemmelsesniveaet i hvert frekvensområde\(^d\).

Der kan opstå interferens i nærheden af udstyr, der er mærket med følgende symbol:

Bemærkning 1: Ved 80 MHz og 800 MHz gælder det højeste frekvensområde.

Bemærkning 2: Disse retningslinjer gælder muligvis ikke i alle situationer.

Elektromagnetisk udbredelse påvirkes af absorption og refleksion fra bygninger, genstande og personer.

\(^a\) ISM-båndene mellem 150 kHz og 80 MHz er 6,765 MHz til 6,795 MHz; 13,553 MHz til 13,567 MHz; 26,957 MHz til 27,283 MHz og 40,66 MHz til 40,70 MHz.

\(^b\) Overensstemmelsesniveaet i ISM-frekvensbåndene mellem 150 kHz og 80 MHz og i frekvensområdet 80 MHz til 2,5 GHz har til formål at mindske sandsynligheden for, at mobilt/bærbart kommunikationsudstyr kan forårsage interferens, hvis det ved et uheld bringes i nærheden af patienten. Som følge heraf er der medtaget en yderligere faktor på 10/3 i de formler, der anvendes til beregning af den anbefalede adskillelsesafstand i disse frekvensområder.

\(^c\) Feltstyrker fra faste transmittere såsom basestationer til radiotelefoner (mobile/trådløse), landmobile radioer, amatørradio, AM og FM radio- og tv-udsendelser kan ikke forudsiges rent teoretisk med nøjagtighed. Du bør overveje at få udført en undersøgelse af de elektromagnetiske forhold på stedet for at kunne vurdere det elektromagnetiske miljø, der hidrører fra faste radiotransmittere. Hvis den målte feltstyrke på det sted, hvor AED’en anvendes, overstiger det relevante radiofrekvens-overensstemmelsesniveau, som angivt ovenfor, skal der holdes øje med, at AED’en fungerer normalt. Hvis der observeres enormal ydelse, kan det være nødvendigt at træffe yderligere foranstaltninger, f.eks. ændre på retningen eller placeringen af AED’en.

\(^d\) Over frekvensområdet 150 kHz til 80 MHz skal feltstyrkerne være under 1 V/m.
Anbefalet adskillesesafstand mellem bærbart og mobilt radiokommunikationsudstyr og AED’en

AED’en er beregnet til brug i et elektromagnetisk miljø, hvor de udstålede radioforstyrrelser kontrolleres. Kunden eller brugeren af AED’en kan hjælpe med til at undgå elektromagnetisk interferens ved at opretholde en minimumsafstand mellem bærbart og mobilt radiokommunikationsudstyr (transmittere) og AED’en som anbefalet nedenfor i henhold til kommunikationsudstyrets maksimale udgangseffekt.

<table>
<thead>
<tr>
<th>Nominal maksimal udgangseffekt for transmitter W</th>
<th>Adskillesesafstand i henhold til transmitterens frekvens m</th>
</tr>
</thead>
<tbody>
<tr>
<td>150 kHz til 80 MHz uden for ISM-båndene</td>
<td>150 kHz til 80 MHz i ISM-båndene 80 MHz til 800 MHz</td>
</tr>
<tr>
<td>800 MHz til 2,5 GHz</td>
<td></td>
</tr>
<tr>
<td>d = 1,2 √P</td>
<td>d = 2,3 √P</td>
</tr>
</tbody>
</table>

0,01 Ikke relevant Ikke relevant 0,12 0,23
0,1 Ikke relevant Ikke relevant 0,38 0,73
1 Ikke relevant Ikke relevant 1,2 2,3
10 Ikke relevant Ikke relevant 3,8 7,3
100 Ikke relevant Ikke relevant 12 23

For transmittere med en nominal maksimal udgangseffekt, som ikke er nævnt ovenfor, kan den anbefalede adskillesesafstand d i meter (m) anslås ud fra den ligning, der gælder for transmitterens frekvens, hvor P er transmitterens maksimale udgangseffekt i watt (W) ifølge producentens oplysninger.

Bemærkning 1: Ved 80 MHz og 800 MHz gælder adskillesesafstanden for det højere frekvensområde.

Bemærkning 2: ISM-båndene mellem 150 kHz og 80 MHz er 6,765 MHz til 6,795 MHz; 13,533 MHz til 13,567 MHz; 26,957 MHz til 27,283 MHz og 40,66 MHz til 40,70 MHz.

Bemærkning 3: Der anvendes en yderligere faktor på 10/3 til beregning af den anbefalede afstand for transmittere i ISM-frekvensbåndene mellem 150 kHz og 80 MHz samt i frekvensområdet 80 MHz til 2,5 GHz for at mindske sandsynligheden for, at mobilt/bærbart kommunikationsudstyr kan forårsage interferens, hvis det utilsigtet bringes i nærheden af patienten.

Bemærkning 4: Disse retningslinjer gælder muligvis ikke i alle situationer. Elektromagnetisk udbredelse påvirkes af absorption og refleksion fra bygninger, genstande og personer.
2 Introduktion

Indhold
◆ AED beskrivelse 2-1
◆ Indikationer for brug 2-3
◆ Kontraindikationer 2-3
◆ Enhedens mulige bivirkninger 2-4
◆ Oversigt over kliniske undersøgelser 2-5
◆ RHYTHMx® AED EKG-analysealgoritme 2-7
◆ Genoplivningsprotokol 2-9
◆ STAR® bifasisk kurve 2-9
◆ STAR® bifasiske energiprotokoller til Powerheart® G3 AED'er 2-10
◆ Krav til brugerens uddannelse 2-12

Dette afsnit indeholder oplysninger om AED'en, brugen af den samt uddannelseskravene i forbindelse med betjening.

Beskrivelse af AED

Cardiac Science Powerheart® G3 Elite AED'er er AED'er til brug i det offentlige rum. De er bærbare, batteridrevne, selvtestende enheder, som bruges til at diagnosticere og behandle livstruende ventrikulære arytmier hos patienter, som ikke reagerer og ikke trækker vejret normalt.

G3 Powerheart® Elite AED fås med halvautomatisk eller fuldautomatisk funktion. Det omfatter de forudtilsluttede genoplivningselektroder, genoplivningsmeddelelser tilpasset brugerens tempo samt HLR-instruktion.

En patients elektrokardiogram (EKG) overvåges, og der leveres et defibrilleringsstød, hvis det er nødvendigt. Stemme- og tekstmeddelelser giver enkle anvisninger for at vejlede brugeren under genoplivning.
Introduktion

AED’er leveres med defibrillationselektroder allerede installeret. Rescue Ready®-indikatoren sikrer brugeren, at AED’en er klar til brug.

AED-modellerne anvender en impedanskompenserende bifasisk kurve.

Batterier

Defibrillationselektroder

Indikationer for brug

Powerheart® AED G3 Semi-Automatic og Powerheart® AED G3 Automatic

Powerheart® G3 Elite AED er indikeret til førstehjælpsbehandling af tilskadekomne med symptomer på pludseligt hjertestop, som:
- Ikke reagerer,
- ikke trækker vejret normalt og
- ikke har en puls.

Når patienten er et barn op til 8 år eller op til 25 kg (55 lb), skal enheden bruges med Intellisense™ Defibrillers-elektroder - pædiatrisk. Behandlingen må ikke udsættes for at fastsætte patientens nøjagtige alder eller vægt.

Powerheart® G3 Elite AED er beregnet til at blive brugt af personer, der er uddannet i dens drift.

9131 Defibrilleringselektroder

Cardiac Science 9131 Defibrilleringselektroder er til engangsbrug og skal bruges sammen med Cardiac Science automatiserede eksterne defibrillatorer (AED) til at monitorere og afgive defibrilleringsenergi til patienten.

Elektroderne er beregnet til kortvarig brug (< 8 timer) og skal anvendes inden udløbsdatoen, som er angivet på emballagen.

AED-elektroder bruges til akut behandling af hjertestoppatienter over 8 år eller med en vægt på mere end 25 kg (55 lb). Brugeren skal vurdere patientens tilstand og bekræfte, at patienten er bevidstløs, uden puls og ikke trækker vejret, før elektroderne sættes på huden.

Kontraindikationer

Powerheart® G3 Elite AED må ikke anvendes til patienter, der reagerer eller trækker vejret normalt.
Enhedens mulige bivirkninger

Nedenfor er en liste over de potentielle skadelige virkninger (f.eks. komplikationer), der er forbundet med brug af enheden og AED'er generelt, angivet i faldende rækkefølge efter alvorsgrad:

◆ Manglende evne til at identificere en stødbar arytmii;
◆ Manglende evne til at give et defibrilleringsstød, når der er ventrikelfibrillering (VF) eller ventrikulær takykardi uden puls (VT), hvilket kan resultere i dødsfald eller permanent skade.
◆ Uegnet energi, som kunne forårsage mislykket defibrillering eller fejlfunktion efter stød;
◆ Myokardiel skade;
◆ Brandfare på grund af høj oxygenkoncentration eller brændbare anæstesigasser;
◆ Elektromagnetisk interferens (EMI) fra defibrillatoren har indflydelse på andre enheder, især under opladning og overførsel af energi;
◆ Forkert stødafgivelse af en pulsbevarende rytmie og fremkaldelse af VF eller hjertestop;
◆ Stød på omkringstående personer på grund af kontakt med patienten under defibrilleringsstød;
◆ Interaktion med pacemakere;
◆ Forbrændinger på huden rundt om det sted, hvor elektroderne er påsat;
◆ Allergisk dermatitis på grund af overfølsomhed over for de anvendte materialer i elektrodekonstruktionen; og
◆ Mindre udslæt.
Oversigt over kliniske undersøgelser

RhythmX® EKG-analyse og STAR® bifasisk defibrillationskurve blev testet under to (2) separate kliniske undersøgelser, IDE G920078 og IDE G970230.

RhythmX® EKG-analyse og STAR® bifasisk defibrillationskurve, IDE G920078

Undersøgelsen formål: At dokumentere effektiviteten af RhythmX EKG-analyse ved hjælp af Powerheart® Automatisk ekstern kardioverter-defibrillator-enheden (AECG), der anvender præcis samme RhythmX-teknologi som Cardiac Science's aktuelle AED'er.

Resultater: I alt 156 patienter blev tilmeldt til forsøgene. Data fra de første 15 patienter blev ekskludere, da arytmidetekteringsalgoritmen blev ændret, efter at de blev undersøgt. De resterende 141 patienter oplevede 92 stødbarde episoder med 117 patienter forbundet til Powerheart® AED, og de resterende 24 randomiseret udelukkende til plejestandarden. Powerheart® AED'ens følsomhed var 100,0 %, den positive forudsigelighed var 93,3 % og specificiteten var 99,4 %. Tabel 2-1 viser de kliniske data for alle patienter med 95 % lavere konfidensgrænse scorer, når de var forbundet til Powerheart® AED'en.

Konklusion: Disse data understøtter den konklusion, at Powerheart® AED detekterer ventrikulære takyarytmier præcist og giver passende behandling i henhold til lægens valgte parametre. De indsamlede data demonstrerede følsomhed på 100,0 %, positiv forudsigelighed som 93,9 % og specificitet som
Introduktion

99,4%. De indledende beregninger af prøvestørrelse antog en forventet følsomhed på 90 %. Den faktiske følsomhed på 100 %, som blev beregnet i dette forsøg, tillod indskrivning af et mindre antal patienter i undersøgelsen og gav samtidig de nødvendige høje konfidensgrænser. Powerheart® AED’ens arytmidetektering og terapeutiske egenskaber samt dets sikkerhed og effektivitet er blevet påvist med et højt konfidensniveau.

STAR® bifasisk kurve IDE G970230

Undersøgelsen formål: For at evaluere effektiviteten af det første stød af monofasiske og STAR® bifasiske kurver for ekstern defibrillering.

Metoder: Der blev udført en prospektiv, randomiseret blindet multicenterundersøgelse med 118 patienter, som var i elektrofysiologisk test eller modtog en implanteret defibrillator. Ventrikelflimmer blev fremkaldt, og defibrillering blev forsøgt hos hver patient med en bifasisk og en monofasisk kurve. Patienterne blev tilfældigt opdelt i to (2) grupper: Gruppe 1 fik stød af stigende energi og Gruppe 2 modtog kun højenergi-stød.

Resultater: STAR® bifasisk kurve opnåede en succesrate ved første stød på 100 % i Gruppe 1 (95 % konfidensinterval [CI] 95,1 % til 100 %) og Gruppe 2 (95 % CI 94,6 % til 100 %), med gennemsnitlige leverede energier på henholdsvis 201±17 J og 295±28 J. Den monofasiske behandling påvist en succesrate på 96,7 % (95 % CI 89,1 % til 100 %) for det første stød og en gennemsnitlig leveret energi på 215±12 J for Gruppe 1, og en succesrate på 98,2 % (95 % CI 91,7 % til 100 %) for det første stød og en gennemsnitlig leveret energi på 352±13 J for Gruppe 2.

Konklusion: STAR® bifasisk kurve blev valideret i et multicenter klinisk forsøg ledet af forskere på The Cleveland Clinic og Cedars-Sinai Medical Center. Analysen viste, at den samlede defibrilleringssuccesrate for første stød med STAR® bifasisk kurve er statistisk højere end monofasisk dæmpet sinuskurve eller 150 J ikke-eskalerende bifasisk kurve.
RHYTHMx AED EKG-analysealgoritme

RHYTHMx™ AED EKG-analysealgoritmen giver EKG-detektionsegenskaber. De funktioner, der er tilgængelige med AED'en, omfatter følgende:

◆ Detektionsrate
◆ Asystoligrænse
◆ Støjdetektering
◆ Ikke-afgivet stød
◆ Synkroniseret stød
◆ Afvisning af pacerpuls
◆ SVT-diskriminatorer
◆ Frekvensen af supraventrikulær takykardi (SVT)

Detektionsrate

Asystoligrænse

Asystoli-tærsklen fra baseline til top er indstillet til 0,08 mV. EKG-rytmer ved eller under 0,08 mV klassificeres som asystoli og vil ikke være stødbare.

Støjdetektering

AED'en vil detektere støjartefakter i EKG’et. Støj kan være fremkaldt af voldsom patientbevægelse eller elektronisk støj fra eksterne kilder såsom mobil- og radiotelefoner. Når der registreres støj, udsender AED'en stemmemeddelelsen "ANALYSE AFBRUDT. STOP PATIENTBEVÆG" for at advare brugeren. AED'en vil derefter analysere rytmen igen og fortsætte med genoplivningen.
Ikke-afgivet stød

Efter AED tilråder et stød, fortsætter den med at monitore patientens EKG-rytme. Hvis patientens rytme ændres til en ikke-stødbar rytme, før det faktiske stød afgives, vil AED'en informere om, at rytmen har ændret sig og udsende stemmemeddeelsen "RYTMEN ER ÅNDRET. STØD ANNULLERET". AED'en vil afbryde opladningen.

Synkroniseret stød

AED'en er konstrueret til automatisk forsøge at synkronisere stødafgivelsen med R-bølgen, hvis den er til stede. Hvis levering ikke kan synkroniseres inden for ét sekund, afgives et ikke-synkroniseret stød.

Registrering af pacemakerpuls

AED'en indeholder kredsløb til detektion af pacemakerimpulser fra en implanteret pacemaker.

SVT-diskriminatører

AED'en leveres med SVT-diskriminatoren aktiveret og med standardindstillingen "INGEN BEHANDLING FOR SVT". Med fabriksindstillingen "INGEN BEHANDLING FOR SVT" vil AED'en ikke afgive stød ved en SVT-rytme.

SVT-frekvens

Alle rytmer med frekvenser mellem detektionsraten og SVT-frekvensen screenes gennem et antal SVT-diskriminatører for at klassificere dem som VF/VT eller SVT. Rytmere klassificeret som SVT mellem de to indstillede frekvenser er ikke stødbare. Alle SVT-rytmer over frekvenserne vil blive klassificeret som stødbare. SVT-frekvensen skal være højere end detektionsfrekvensen og kan indstilles til mellem 160 og 300 bpm, eller "INGEN BEHANDLING FOR SVT" kan vælges af den lægefagligt ansvarlige via MDLink-softwaren.
Genoplivningsprotokol

AED'ens genoplivningsprotokol er i overensstemmelse med de retningslinjer, som anbefales i "AHA/ERC 2015 Guidelines for Resuscitation and Emergency Cardiac Care".

Ved detektering af en stødbar hjerterytme informerer AED'en brugeren om at trykke på knappen STØD (kun 9790E) for at afgive et defibrilleringsstød, efterfulgt af instruktioner i at udføre 2 minutters hjerte-lunge-redning.

For Powerheart® AED G3 Automatic vil der ved detektering af en stødbar rytme automatisk blive afgivet et defibrilleringsstød efterfulgt af instruktioner om at udføre 2 minutters hjerte-lunge-redning.

STAR® bifasisk kurve

STAR bifasisk kurve er udviklet til at måle patientens impedans og afgive et patienttilpasset stød. Dette gør det muligt at afgive et optimeret energiniveau til hver patient. Energiniveauerne til Powerheart® G3 AED findes i tre forskellige niveauer af defibrilleringsstød.

Stød med ultralav energi (150 VE), lav energi (200 VE) og høj energi (300 VE) er variabel energi. Den faktiske energi afgøres af patientens impedans. Se Tabel 2-2 på side 2-10, Tabel 6-2 på side 6-8, Tabel 6-3 på side 6-8 og Tabel 6-4 på side 6-9 for at få yderligere oplysninger. For pædiatriske patienter henvises til tabel 6-5 på side 6-11, Tabel 6-6 på side 6-11, Tabel 6-7 på side 6-11, Tabel 6-8 på side 6-12 og Tabel 6-9 på side 6-12.
STAR® bifasiske energiprotokoller til Powerheart® G3 AED'er

STAR bifasisk defibrillationskurve vil levere variabel stigende energi, som tilpasses til den enkelte patients behov baseret på patientens brystimpedans. Denne tilpasning tager højde for de unike fysiske forskelle mellem forskellige patienter. Powerheart® G3 AED kommer udstyret med fem forskellige protokoller for bifasisk energi.

Disse protokoller vælges ved at bruge MDLink-softwareprogrammet. De fem tilgængelige protokoller for bifasisk energi er som følger:

Tabel 2-2: Bifasiske energiprotokoller

<table>
<thead>
<tr>
<th>Energiprotokoller</th>
<th>Stødsekvens</th>
<th>Energiniveau (VE)</th>
<th>Energiområde² (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fabriksindstilling</td>
<td>1</td>
<td>200</td>
<td>126-260</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>300</td>
<td>170-351</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>300</td>
<td>170-351</td>
</tr>
<tr>
<td>Protokol #2</td>
<td>1</td>
<td>200</td>
<td>126-260</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>200</td>
<td>126-260</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>300</td>
<td>170-351</td>
</tr>
<tr>
<td>Protokol #3</td>
<td>1</td>
<td>150</td>
<td>95-196</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>200</td>
<td>126-260</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>200</td>
<td>126-260</td>
</tr>
</tbody>
</table>
Tabel 2-2: Bifasiske energiprotokoller (fortsat)

<table>
<thead>
<tr>
<th>Energiprotokoller</th>
<th>Stød-sekvens¹</th>
<th>Energiniveau (VE)</th>
<th>Energiområde² (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protokol #4</td>
<td>1</td>
<td>150</td>
<td>95-196</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>150</td>
<td>95-196</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>200</td>
<td>126-260</td>
</tr>
<tr>
<td>Protokol #5</td>
<td>1</td>
<td>200</td>
<td>126-260</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>200</td>
<td>126-260</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>200</td>
<td>126-260</td>
</tr>
</tbody>
</table>

¹ Stød med ultralav energi (150 VE), lav energi (200 VE) og høj energi (300 VE) er variabel energi. Den faktiske energi afgøres af patientens impedans.

² Tilladt energiområde.
Introduktion

Krav til brugerens uddannelse

Personer, der har tilladelse til at betjene AED'en, skal som minimum have følgende uddannelse:

- Defibrillationstræning og anden uddannelse som påkrævet i henhold til den gældende lovgivning.
- Uddannelse i betjening og brug af AED'en
- Yderligere uddannelse som påkrævet af lægen eller den lægefagligt ansvarlige
- En grundig forståelse af procedurerne i denne manual.

Bemærk: Sørg for at opbevare gyldige uddannelsescertifikater og certificering i henhold til gældende lovgivning.
3 Kom godt i gang

Indhold
- AED-indikatorer 3-2
- Indstilling af AED'ens interne ur 3-6
- RescueCoach™ stemmemeddelelser og tekstdisplay 3-7
Kom godt i gang

AED-indikatorer

Følgende indikatorer findes på AED'en.

Rescue Ready® statusindikator
Statusindikatoren findes på Powerheart® G3 AED-håndtaget.

Når indikatoren er grøn, er AED'en klar til genoplivning. Dette betyder, at AED'ens selvtest har bekræftet følgende:

- Batteriet er tilstrækkeligt opladet.
- Elektroderne er korrekt forbundet med AED'en og virker.
- Integriteten af det interne kredsløb er god.

Når statusindikatoren lyser rødt, er opmærksomhed påkrævet.

1. Åbn låget på AED'en for at fejlsøge på problemet.
2. AED'en kan blive klar til genoplivning (indikatoren bliver grøn), når den har udført yderligere tests.

Bemærk: Når statusindikatoren viser ikke klar til genoplivning (indikatoren er rød), vil du muligvis høre en periodisk bip-lyd. Se Hørbar vedligeholdelsesindikator for at få oplysninger om fejlfinding.

Bemærk: Fortsæt med genoplivning, hvis statusindikatoren viser ikke klar til genoplivning (indikatoren lyser rødt).

Hørlig indikator for vedligeholdelse

Når den daglige, ugentlige eller månedelige selvtest fastslår, at service er påkrævet, lyder der et bip hvert 30 sekund, indtil låget åbnes eller batteriet er løbet tør for strøm. Åbning og lukning af låget kan deaktivere bippet. Hvis fejlen ikke er blevet rettet ved den næste automatiske selvtest, begynder apparatet at bippe igen.

Diagnostisk panel

Det diagnostiske panel har følgende indikatorer:

1. Smartgauge™-batteriindikator
2. Elektrodeindikator
3. Serviceindikator
4. Stødknap (kun for Powerheart® G3 Elite Semi-Automatic model 9790E)

Smartgauge™ indikator for batteristatus

Smartgauge™ batteristatusindikatoren har fem lysdioder, fire grønne og en rød. De fire grønne lysdioder til højre viser batteriets resterende kapacitet, på samme måde som en benzinmåler. Ved brug går de grønne lysdioder gradvist ud fra højre mod venstre, efterhånden som batteriets kapacitet mindskes. Når de grønne lysdioder slukkes og den røde lysdiode lyser, skal batteriet udskiftes.

Bemærk: Første gang den røde lysdiode lyser – når låget åbnes eller under genoplivning – vises meddeelsen LAVT BATTERI straks. AED’en er dog i stand til at levere mindst 9 defibrilleringsstød, efter at den første meddelelse om LAVT BATTERI udsendes.

Når AED-batteriet ikke kan afgive flere stød, vises LAVT BATTERI på tekstdisplayet, og den røde batterilysdiode lyser. Genoplivningen fortsættes ved at lade låget stå åbent, fjerne batteriet og udskifte det med et nyt batteri. Hvis batteriudskiftning tager mere end 60 sekunder, afsluttes det første genoplivningsforsøg, og et andet genoplivningsforsøg starter efter isættelse af batteri.

Bemærk: Når batteriet er afladet, lyser hverken lysdioderne eller tekstdisplayet.
Elektrodeindikator

Elektrode-lysdioderne lyser, når elektroderne:

- Ikke er korrekt tilsluttet til AED’en
- Ikke er inden for driftsspecifikationer (kolde, tørre, beskadigede)
- Frakobles fra patienten under genoplivning.

Serviceindikator

Servicelysdioden lyser, når AED’en detekterer en fejl, som ikke kan korrigeres ved hjælp af selvtesten. Kontakt Cardiac Science Teknisct support (se Kontaktoplysninger på side 1-2) eller – uden for USA, – den lokale Cardiac Science-repræsentant.

Stødknap

Tekstdisplay

Tekstdisplayet har 2 tekstlinjer. Tekstdisplayet giver brugeren oplysninger om systemstart, tekstmeddelelser og data under genoplivning samt diagnostik.

Initialisering af systemet sker, når låget åbnes første gang. Tekstdisplayet viser brugeren versionsidentifikatorerne for den interne kode, stemmemeddelelser og tekstmeddelelser. Tekstdisplayet viser også den aktuelle dato og klokkeslæt.

Bemærk: Der er en 3 sekunders forsinkelse fra AED-låget åbnes og til start af genoplivningen. Denne 3 sekunders forsinkelse medtages ikke i den forløbne genoplivningstid.
Indstilling af AED'ens interne ur

For amerikanske modeller er det interne ur forudindstillet til Central Standard Time. Du kan indstille uret til lokal dato og klokkeslæt. For at indstille uret skal du have en PC med Windows 7 eller en nyere version og RescueLink-softwaren installeret, og AED'ens serielle kabel tilsluttet til PC'en.

Sådan indstilles uret:
1. Sørg for, at PC'en er indstillet til den korrekte lokale dato og klokkeslæt.
2. Åbn låget på AED'en og kør RescueLink-softwaren på PC'en.
3. Forbind kablet til den serielle port på AED'en.
4. Bekræft, at stemmemeddelelsen siger "Kommunikationsfunktion".
6. Klik på knappen Hent for at få vist det aktuelle klokkeslæt i AED'en.
RescueCoach™ stemmemeddelelser og tekstdisplay

RescueCoach-stemmemeddelelserne aktiveres, når AED-låget åbnes, og guider brugeren igennem genoplivningsforsøget. AED-tekstdisplayet giver en visuel visning af de fleste hörbare stemmemeddelelser.

De følgende tabeller viser stemme- og tekstemeddelelserne samt en beskrivelse af, hvornår meddelelserne anvendes.

Tabel 3-1: Indledningsvise instruktioner

<table>
<thead>
<tr>
<th>Stemmemeddelelse</th>
<th>Tekstdisplay</th>
<th>Situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Bevar roen, følg stemmeinstruktionerne, sikre dig at der er ringet 1-1-2"</td>
<td>RING TIL 1-1-2.</td>
<td>Afspilles efter selvtest ved lågåbning, standard er TÆNDT.</td>
</tr>
<tr>
<td>"Bevar roen, følg stemmeinstruktionerne, sikre dig at der er ringet 1-1-2"</td>
<td>RING TIL ALARM-CENTRALEN NU!</td>
<td>Den lægefagligt ansvarlige kan bruge MDLink® til at vælge denne meddelelse i stedet for "RING TIL 1-1-2". MDLink gør det også muligt at deaktivere meddelelser om alarmcentral og 1-1-2.</td>
</tr>
</tbody>
</table>

Tabel 3-2: Klargøring

<table>
<thead>
<tr>
<th>Stemmemeddelelse</th>
<th>Tekstdisplay</th>
<th>Situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Begynd med at blotte patientens brystkasse. Fjern eller klip tøj om nødvendigt."</td>
<td>FJERN TØJ FRA PATIENTENS OVERKROP</td>
<td>Giver redningspersonalet besked om at fjerne patientens tøj.</td>
</tr>
</tbody>
</table>
Tabel 3-2: Klargøring (fortsat)

<table>
<thead>
<tr>
<th>Stemmemeddelelse</th>
<th>Tekstdisplay</th>
<th>Situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Når patientens bryst er blottet, tages den firkantede foliepakke fra hjertestarterens låg".</td>
<td>NÅR OVERKROP ER BAR TAG FOLIEPAKKEN</td>
<td>Giver redningspersonalet besked om at fjerne elektroderne fra AED-låget.</td>
</tr>
<tr>
<td>"Riv foliepakken åben på tværs af den stiplede linje og tag elektroderne ud".</td>
<td>ÅBN ELEKTRODE PAKKEN TAG ELEKTRODERNE UD</td>
<td>Giver redningspersonalet besked om at åbne elektodepakken og tag elektroderne ud.</td>
</tr>
<tr>
<td>"Sæt elektroden uden blåt plastikstykke på patienten, nøjagtig som vist. Denne elektrode skal sættes på et af de to viste steder".</td>
<td>TRYK ELEKTRODEN FAST PÅ BryST SOM VIST</td>
<td>Giver redningspersonalet besked om at sætte én elektrode på patienten.</td>
</tr>
<tr>
<td>"Træk så det blå plastikstykke af den anden hvide elektrode."</td>
<td>TRÆK ANDEN ELEKTRODE AF BLÅT PLASTSTYKKE</td>
<td>Giver redningspersonalet besked om at fjerne plastikstykket fra den anden elektrode.</td>
</tr>
</tbody>
</table>
Tabel 3-3: Analyse

<table>
<thead>
<tr>
<th>Stemmemeddelelse</th>
<th>Tekstdisplay</th>
<th>Situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Gør klar til at afgive stød Hold afstand fra patienten!"</td>
<td>UNDGÅ KONTAKT MED PATIENTEN</td>
<td>Gentages, mens AED’en gør klar til at levere et defibrilleringsstød (lader).</td>
</tr>
</tbody>
</table>

Tabel 3-4: Afgivelse af stød - halvautomatisk

<table>
<thead>
<tr>
<th>Stemmemeddelelse</th>
<th>Tekstdisplay</th>
<th>Situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Tryk på den røde blinkende knap for at afgive stød"</td>
<td>TRYK KNAP FOR AT GIVE STØD.</td>
<td>Udsendes, efter AED’en er fuldt opladet og klar til at levere defibrilleringsstødet. Den RØDE STØD-indikator blinker, og sætningen gentages i 30 sekunder eller indtil der trykkes på STØD-knappen.</td>
</tr>
<tr>
<td>"Stødet er givet"</td>
<td>STØDET ER GIVET</td>
<td>Meddelelse, når stødet er afgivet</td>
</tr>
</tbody>
</table>

Tabel 3-5: Afgivelse af stød - fuldautomatisk

<table>
<thead>
<tr>
<th>Stemmemeddelelse</th>
<th>Tekstdisplay</th>
<th>Situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Der afgives stød om"</td>
<td>STØD OM:</td>
<td>Efter AED’en er fuldt opladet og klar til at levere defibrilleringsstødet. STØDET gives automatisk cirka tre sekunder efter stemmemeddelelsen.</td>
</tr>
<tr>
<td>"Tre"</td>
<td>TRE</td>
<td>Udsendes cirka tre sekunder før afgivelse af stød.</td>
</tr>
<tr>
<td>"To"</td>
<td>TO</td>
<td>Udsendes cirka to sekunder før afgivelse af stød.</td>
</tr>
<tr>
<td>"Een"</td>
<td>EEN</td>
<td>Udsendes cirka ét sekund før afgivelse af stød.</td>
</tr>
<tr>
<td>"Stødet er givet"</td>
<td>STØDET ER GIVET</td>
<td>Udsendes, når stødet er afgivet.</td>
</tr>
</tbody>
</table>
Tabel 3-6: HLR-stemmemeddelelser

<table>
<thead>
<tr>
<th>Stemmemeddelelse</th>
<th>Tekstdisplay</th>
<th>Situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bemærk: AED’en leveres fra fabrikken med UDVIDET TILSTAND slået TIL. Den lægefagligt ansvarlige kan ændre HLR-indstillingerne i MDLink®. Meddelelser angående UDVIDET HLR er anført i denne tabel. Medmindre andet fremgår, gælder meddelelserne både HLR med kun hjertemassage og traditionel HLR (hjertemassage og kunstigt åndedræt).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| “Det er nu sikkert at røre patienten.” | DET ER NU SIKKERT AT RØRE PATIENTEN | Giver redningspersonalet besked om, at det er sikkert at røre patienten:
- Efter AED’en afgiver et stød.
- Efter AED’en detekterer en ikke-stødbar hjerterytme. |
Bemærk: Denne stemmemeddelelse vedrører kun traditionel HLR. |
| "Anbring håndroden midt på brystet mellem brystvorterne." | ANBRING EN HÅND MIDT PÅ BRYSTET | Giver redningspersonalet besked om at anbringe en hånd for at give hjertemassage. |
| “Anbring håndroden på den anden hånd direkte oven på den første hånd. Læn ind over patienten med strakte albuer.” | PLACER ANDEN HÅND OVENPÅ FØRSTE HÅND | Giver redningspersonalet besked om at anbringe den anden hånd og kroppen korrekt for at give hjertemassage. |
| “Tryk hurtigt patientens bryst ned en tredjedel dybt og slip” | TRYK BRYSTET NED ÉN TREDIE DEL | Giver redningspersonalet besked om at trykke ned en tredjedel af dybden på patientens brystkasse. |
| “Start hjerte-lunge redning.” | START HJERTE LUNGE REDNING | Giver besked om at starte HLR. |
| "Tryk" (30 gange med 100/minut) i den resterende tid for HLR-sessionen. (eller) Metronom (30 gange med 100/minut) (eller) Ingen stemmemeddelelse (tavshed) | {HLR-TÆLLER} | HLR-tælleren viser antallet |
| **Bemærk:** Indstillingen vælges i MDLink-softwaren. |
Tabel 3-6: HLR-stemmemeddelelser (fortsat)

<table>
<thead>
<tr>
<th>Stemmemeddelelse</th>
<th>Tekstdisplay</th>
<th>Situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Stop kompressioner"</td>
<td>STOP KOMPRESSIO</td>
<td>Udsendes i slutningen af hver HLR-runde. Bemærk: Denne stemmemeddelelse vedrører kun traditionel HLR, i udvidet tilstand.</td>
</tr>
<tr>
<td>"Giv indblæsning, giv indblæsning."</td>
<td>GIV INDBLÆSNING</td>
<td>Giver besked om at give patienten to indblæsninger. Bemærk: Denne stemmemeddelelse vedrører kun traditionel HLR, i udvidet tilstand.</td>
</tr>
<tr>
<td>"Fortsæt med kompressioner."</td>
<td>FORTSÆT MED KOMPRESSIO</td>
<td>Udsendes i efterfølgende runder af samme HLR-session. Bemærk: Denne stemmemeddelelse er kun tilgængelig i udvidet HLR i standardmeddelelsessættet. Bemærk: Denne stemmemeddelelse vedrører kun traditionel HLR.</td>
</tr>
<tr>
<td>"Stop HLR"</td>
<td>STOP HJERTE LUNGE REDNING</td>
<td>Giver besked om at stoppe HLR.</td>
</tr>
<tr>
<td>"Fortsæt HLR"</td>
<td>FORTSÆT HJERTE LUNGE REDNING</td>
<td>Udsendes under HLR-intervallet, der er aktiveret i standardmeddelelsessættet. Udsendes, når låget åbnes igen under HLR-cyklussen.</td>
</tr>
</tbody>
</table>

Tabel 3-7: Elektrodeproblemer

<table>
<thead>
<tr>
<th>Stemmemeddelelse</th>
<th>Tekstdisplay</th>
<th>Situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Kontroller at elektrode stikket er sat i hjertestarteren. Tryk elektroder fast på patientens bare hud."</td>
<td>KONTROLLER STIK ER SAT I TRYK ELEKTRODER FAST PÅ BAR HUD</td>
<td>Stemmemeddelelse, når defibrileringselektrodestikket ikke er sat rigtigt i elektrodeporten.</td>
</tr>
<tr>
<td>"Kontroller at elektrode stikket er sat i hjertestarteren. Tryk elektroder fast på patientens bare hud."</td>
<td>KONTROLLER STIK ER SAT I TRYK ELEKTRODER FAST PÅ BAR HUD</td>
<td>Udsendes, når bedre elektrodekonnektivitet til patientens hud er påkrævet, fordi impedansen er for høj.</td>
</tr>
</tbody>
</table>
Tabel 3-8: Andre stemmemeddelelser

<table>
<thead>
<tr>
<th>Stemmemeddelelse</th>
<th>Tekstdisplay</th>
<th>Situation</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Åbn låg for at fortsætte genoplivning".</td>
<td>ÅBN LÅG FORTSÆT GENOPPLIVNING</td>
<td>Når låget lukkes ved et uheld under genoplivning, gentages denne stemmemeddelelse 15 sekunder.</td>
</tr>
<tr>
<td>Rytmen er ændret, stødet er annulleret".</td>
<td>RYTMEN ÅNDRET STØD ANNULLERET</td>
<td>Når enheden er klar til at afgive stød og derefter registrerer en ændring i hjerterytmen og derfor annullerer stødet.</td>
</tr>
<tr>
<td>"Fjern kabel for at fortsætte genoplivning".</td>
<td>FJERN KABLET FORTSÆT GENOPPLIVNING</td>
<td>Når et serielt kommunikationskabel er forbundet med AED’en under genoplivning, gentages sætningen, indtil kablet er frakoblet.</td>
</tr>
<tr>
<td>"Kommunikations-funktion"</td>
<td>KOMMUNIKATIONS FUNKTION</td>
<td>Når låget er åbent, og det serielle kommunikationskabel er tilsluttet til AED’en.</td>
</tr>
</tbody>
</table>
4 Datahåndtering

Indhold
◆ Optagelse af genoplivningsdata 4-1
◆ Gennemsyn af genoplivningsdata 4-2

Optagelse af genoplivningsdata

AED’en optager automatisk RescueLink-data og kan lagre op til 60 minutters EKG-monitoreringstid i den interne hukommelse. Flere genoplivningsforsøg kan lagres i den interne hukommelse, således at redningspersonalet kan foretage flere genoplivningsforsøg uden at skulle overføre dataene til en PC. Hvis den interne hukommelse bliver fuld, vil AED’en slette data om genoplivningsforsøg efter behov, begyndende med de ældste data.

Ved overførsel af data giver RescueLink brugeren mulighed for at vælge, hvilke genoplivningsdata der skal overføres. Se RescueLink-applikationens HJÆLP-filer for at få yderligere oplysninger.
Gennemsyn af genoplivningsdata

Sådan hentes data fra den interne hukommelse:

1. Åbn AED-låget.
2. Tilslut det serielle kabel til PC'en og AED'ens serielle port under det orange dataadgangsdæksel af gummi. Stemmemeddelelsen vil sige "Kommunikationsfunktion".
4. Vælg kommunikation. Hent genoplivningsdata
5. Vælg AED'ens interne hukommelse, og vælg derefter OK.
6. Vælg et genoplivningsforsøg ved at klikke på datoen, og tryk på OK.

ADVARSEL! Risiko for elektrisk stød og brand

Du må ikke tilslutte telefoner eller uautoriserede konnektorer til dette udstyr.

OBS: Serielt kommunikationskabel

Det serielle kommunikationskabel er udelukkende beregnet til brug med AED'en. Det er ikke beregnet til brug sammen med en telefon. Sørg for, at AED-låget er lukket i mindst 30 sekunder, før du forbinder det serielle kommunikationskabel med AED'en.
5 Fejlfinding og vedligeholdelse

Indhold
◆ Selvtest 5-1
◆ Fejlfindingstabel for indikatorer 5-3
◆ Planlagt vedligeholdelse 5-4
◆ Autoriseret reparationsservice 5-6
◆ Ofte stillede spørgsmål 5-7

Dette afsnit indeholder oplysninger om AED’en diagnostiske selvtests, vedligeholdelse og serviceindikationer.

Selvtest

AED’en har et omfattende selvtestsystem, som automatisk tester elektronikken, batteriet, elektroderne og højspændingskredsløbet. Selvtestene aktiveres også, hver gang du åbner og lukker AED-låget.

Når AED’en udfører selvtest, udføres de følgende trin automatisk:
1. Tænder, og statusindikatoren skifter til rød
2. Selvtesten udføres
3. Hvis den er vellykket, skifter statusindikatoren tilbage til grøn
4. Slukker selv, når låget lukkes.

Der findes tre typer automatiske selvtests:
◆ Den daglige selvtest kontrollerer batteriet, elektroderne og de elektroniske komponenter
- Den ugentlige selvtest udfører en delvis opladning af højspændingselektronikken foruden de elementer, der testes ved den daglige selvtest.
- Under den månedlige selvtest udføres fuld opladning af højspændingselektronikken foruden de elementer, der testes ved den daglige selvtest.

Derudover initieres der selvtests, når låget åbnes, og igen når låget lukkes.

Hvis selvtesten registrerer en fejl, forbliver statusindikatoren rød. Når låget lukkes, udsendes en hørbar alarm. Det diagnosiskt panel under låget viser kilden til problemet i henhold til tabel 5-1 på side 5-3.
Fejlfinding og vedligeholdelse

Fejlfindingstabel for indikatorer

Følgende er en fejlfindingstabel for AED-indikatorerne.

Tabel 5-1: Fejlfindingstabel for indikatorer

<table>
<thead>
<tr>
<th>Visning</th>
<th>Symptom</th>
<th>Løsning</th>
</tr>
</thead>
</table>
OBS: Ekstreme temperaturer
Hvis AED'en udsættes for ekstreme miljøforhold uden for dennes driftsparametre, kan det kompromittere AED'ens evne til at fungere korrekt. Rescue Ready® daglig selvtetest efterprøver indvirkningen af ekstreme miljøforhold på AED'en. Hvis den daglige selvtetest fastslår, at miljøforholdene er uden for AED'ens driftsparametre, kan Rescue Ready-indikatoren skifte til rød (ikke klar til genoplivning) og AED'en kan sende advarslen "SERVICE NØDVENDIG" for at bede brugeren om, straks at flytte AED'en til miljøforhold inden for de acceptable driftsparametre. Se kapitel 6, Tekniske data for at få angivet acceptable omgivelsesbetingelser, og Rescue Ready-statusindikatoren på side 3-2 for at få oplysninger om Rescue Ready-indikatoren.

OBS: Ikke klar til genoplivning
Andre problemer end ekstreme omgivelsesbetingelser kan medføre, at AED'en ikke bliver klar til genoplivning. Du kan finde flere oplysninger under Rescue Ready®-statusindikator på side 3-2.

Planlagt vedligeholdelse

Bemærk: Powerheart® G3 AED'er udfører hver uge delvise opladninger og hver måned fulde opladninger af højspændingskredsløbet som en del af det omfattende selvtestprogram. Derfor anbefaler Cardiac Science ikke, at brugere foretager yderligere strømtests.

Følgende tests skal foretages i henhold til den angivne tidsplan:

Daglig vedligeholdelse
Kontrollér statusindikatoren for at sikre, at den er GRØN. Når indikatoren er GRØN, er AED'en klar til brug i forbindelse med genoplivning. Hvis indikatoren er RØD, skal du se fejlfindingstabellen på side 5-3.

Månedlig vedligeholdelse
Udfør følgende procedure hver måned (28 dage):
1. Åbn AED-låget.
2. Vent på, at AED'en angiver status. Hold øje med, at STATUSINDIKATOREN skifter fra GRØN til RØD under AED'ens selvtest ved opstart. Efter ca. 5 sekunder skal det sikres, at STATUSINDIKATOREN igen bliver GRØN.
4. Kontrollér Smartgauge™ på frontpanelet for at sikre, at batteriet har tilstrækkelig opladning. Udskift batteriet, hvis indikatoren er RØD.
5. Lyt efter stemmemeddelelserne. Desuden skal det kontrolleres, at displayet viser meddelelser, der svarer til lyden.
6. Luk låget og kontrollér, at STATUSINDIKATOREN skifter fra GRØN til RØD under sin selvtest ved nedlukning. Efter ca. 5 sekunder skal det sikres, at statusindikatoren bliver GRØN.

Årlig vedligeholdelse

Udfør følgende test årligt for at bekræfte, at diagnostikken virker korrekt, og for at verificere kabinettets integritet.

Efterprøv elektrodernes og kredsløbets integritet:
1. Åbn AED-låget.
2. Fjern elektroderne.
3. Luk låget.
4. Kontrollér, at STATUSINDIKATOREN bliver RØD.
5. Åbn låget, og kontrollér, at elektrodeindikatoren lyser.
6. Tilslut elektroderne igen, og luk låget.
7. Kontroller, at udløbsdatoen er synlig gennem det gennemsigtige vindue i låget.
9. Åbn låget og bekræft, at ingen diagnostiske indikatorer lyser.
11. Tjek elektrodeemballagens integritet.
12. Luk låget.
Kontrollér tilstanden af serviceindikator (LED) og kredsløb (kun for Powerheart® G3 Elite Semi-Automatic model 9790E):

1. Umiddelbart efter åbning af AED-låget skal du trykke på Stød-knappen og holde den nede for at bekræfte, at serviceindikatoren lyser.
2. Slip Stød-knappen.
3. Luk låget.
4. Kontrollér, at STATUSINDIKATOREN forbliver RØD.
5. Åbn låget, og bekræft, at ingen indikatorer på det diagnostiske panel lyser.
6. Luk låget.
7. Kontrollér, at STATUSINDIKATOREN bliver GRØN.

Kontrollér kabinettets integritet.
Undersøg det støbte kabinet til AED'en for eventuelle synlige tegn på belastning. Hvis kabinettet viser tegn på belastning, skal du kontakte Cardiac Science Teknisk support (se Kontaktoplysninger på side 1-2) eller – uden for USA – den lokale Cardiac Science-repræsentant.

OBS: Beskadigelse af udstyr
Ved rengøring af enheden skal du bruge et af følgende: Isopropylalkohol, ethanol, en mild, vandig sæbeopløsning eller en 3 % opløsning af hydrogenperoxid.

OBS: Beskadigelse af udstyr
Alle rengøringsopløsninger og fugt skal holdes væk fra indersiden af defibrilleringselektroderne og åbningerne på kabelstikkene.

Autoriseret reparationsservice
AED'en har ingen brugerservicerbare interne komponenter. Forsøg at løse eventuelle vedligeholdelsesproblemer med AED'en ved hjælp af fejlfindingstabellen i dette kapitel. Hvis du ikke kan løse problemet, skal du kontakte Cardiac Science Teknisk support (se Kontaktoplysninger på side 1-2) eller – uden for USA – den lokale Cardiac Science-repræsentant.

ADVARSEL! Fare for elektrisk stød
AED'en må ikke skilles ad. Hvis denne advarsel ignoreres, kan det medføre alvorlig personskade eller dødsfald. Vedligeholdelsesproblemer skal henvises til autoriseret servicepersonale fra Cardiac Science.

Bemærk: Garantien bortfalder, hvis der foretages uautoriseret demontering, ændring eller vedligeholdelse af AED'en.
Ofte stillede spørgsmål

Spørgsmål: Kan jeg give HLR, mens AED'en analyserer?
Svar: Brugeren skal standse HLR-kompressioner i analysefasen som angivet i de aktuelle AHA/ERC-retningslinjer.

Spørgsmål: Kan jeg transportere patienten, mens AED'en analyserer?
Svar: Nej. Et køretøjs bevægelse kan skabe støjartefakter, som kan forstyrre analysen af hjerterytmen. Stands køretøjet, når det er nødvendigt at foretage analysen af hjerterytmen.

Spørgsmål: Er det sikkert at give patienten stød med AED'en, hvis patienten ligger på et ledende gulv, antistatisk gulv eller en metalflade?
Svar: Ja, det er sikkert. Brug af en Powerheart® AED på en patient, der ligger på et elektrisk ledende gulv, antistatisk gulv eller en metalflade, udgør ikke en sikkerhedsfare for brugeren af enheden eller patienten.

Spørgsmål: Er det nødvendigt at klargøre brystkassen, før elektroderne sættes på?

Spørgsmål: Hvad sker der, hvis batteriniveauet er lavt?
Svar: Der er flere forskellige tilstande med lavt batteriniveau, som AED’en vil registrere:

Registrering af lavt batteriniveau - AED’en i brug: Første gang den røde lysdiode lyser – når låget åbnes eller under genoplævnings – vises meddelelsen LAVT BATTERI. AED’en er dog i stand til at levere mindst 9 defibrilleringsstød, efter at den første meddelelse om LAVT BATTERI udsendes.

Batteriniveauet er for lavt til at oplade AED’en under genoplævnings: Når AED’en ikke er i stand til at afgive flere stød, vises meddelelsen LAVT BATTERI, indtil batteriet er blevet udskiftet eller AED-aktiviteten afsluttes.

For at fortsætte med genoplævningsforsøget skal du lade låget stå åbent og udskifte batteriet. Når batteriudskiftning tager mere end 60 sekunder, afsluttes det første genoplævningsforsøg, og AED’en begynder derefter at optage hændelserne som et separat genoplævningsforsøg.
Batteriet er helt afladet – Ingen AED-funktion: Al AED-aktivitet standser, indtil batteriet udskiftes med et nyt batteri.

Spørgsmål: Hvordan indstiller jeg AED’ens interne ur?

Svar: Uret kan indstilles ved at bruge Rescuelink-softwareprogrammet og en PC. Se Indstilling af AED’ens interne ur i Kapitel 3

Spørgsmål: Hvad sker der, hvis jeg lukker låget midt i et genoplivningsforsøg?

Svar: Hvis du lukker låget under et genoplivningsforsøg, skal du åbne låget igen inden for 15 sekunder for at fortsætte med genoplivningsforsøget. Du vil høre stemmemeddelelsen ”Åbn låg for at fortsætte genoplivning”. Hvis låget forbliver lukket i mere end 15 sekunder, indledes et nyt genoplivningsforsøg, når låget åbnes igen.

Bemærk: Hvis låget lukkes under et genoplivningsforsøg, mens elektroderne er forbundet til patienten, forbliver STATUSINDIKATOREN GRØN. Når låget åbnes igen, vil STATUSINDIKATOREN være RØD og derefter vende tilbage til GRØN. Genoplivningsforsøget kan fortsættes.

Spørgsmål: Min AED udsender en hørbar alarm. Hvorfor? Hvordan stopper jeg det?

Svar: Den hørbare alarm angiver, at selvtesten har registreret, at der er behov for vedligeholdelse eller korrigérerende handling. Åbn apparatets låg, og kig på indikatoren på det diagnostiske panel. Afgør den nødvendige vedligeholdelse ved at bruge fejlfindingstabellen på side 5-3.

Svar: Selvtest af elektroderne, når låget lukkes, aktiverer kun STATUSINDIKATOREN. AED’en giver tid til udskiftning af elektroderne – eftersom fjernelse af elektroderne er normal procedure efter et genoplivningsforsøg – eller et batteri under proceduren efter genoplivningsforsøget.

Spørgsmål: Hvad hvis jeg skal foretage et genoplivningsforsøg i et isoleret område og ved temperaturer under frysepunktet?

Svar: Når transport til et redningssted indebærer, at AED’en udsættes for ekstremt kolde temperaturer i længere tid, skal elektroderne og batteriet holdes varme.
6 Tekniske data

Indhold
◆ Parametre 6-1
◆ Energiværdier med Cardiac Science forudinstallerede (voksen) elektroder og STAR® bifasisk bølgeform 6-7
◆ Dæmpede energiværdier med pædiatriske elektroder fra Cardiac Science og Star-bifasisk kurve 6-10

Dette afsnit angiver AED-parametrene og beskriver STAR® bifasiske kurver.

Parametre

Tabel 6-1: Parametre

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Oplysninger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betjening</td>
<td>Halvautomatisk</td>
</tr>
<tr>
<td></td>
<td>Automatisk</td>
</tr>
<tr>
<td>Lydalarmer</td>
<td>Stemmemeddelelse</td>
</tr>
<tr>
<td></td>
<td>Vedligeholdelsesalarm</td>
</tr>
<tr>
<td>Synlige indikatorer</td>
<td>Statusindikator</td>
</tr>
<tr>
<td></td>
<td>Indikator for batteristatus</td>
</tr>
<tr>
<td></td>
<td>Serviceindikator</td>
</tr>
<tr>
<td></td>
<td>Elektrodeindikator</td>
</tr>
<tr>
<td></td>
<td>Tekstdisplay</td>
</tr>
<tr>
<td>Lagring af genoplivningsdata</td>
<td>Intern hukommelse med 60 minutters EKG-data og hændelseskommentar</td>
</tr>
</tbody>
</table>
Tekniske data

Tabel 6-1: Parametre (fortsat)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Oplysninger</th>
</tr>
</thead>
</table>
| **Mål** | Højde: 8 cm (3,3 tommer)
Bredde: 27 cm (10,6 tommer)
Dybde: 31 cm (12,4 tommer) |
| **Vægt (batterier og elektroder)** | 3,10 kg (6,6 lb) |
| **Miljøforhold ved drift og standby** | Temperatur: 0 °C til 50 °C (32 °F til 122 °F)
Fugtighed: 5 % til 95 % (ikke-kondenserende)
Tryk: 57 kPa (+15.000 fod) til 103 kPa (-500 fod) |
| **Elektroder** | Selvklæbende defibrilleringselektroder til engangsbrug.
Min. kombineret overfladeområde: 228 cm2 (35,3 in2)
Udstrakt længde af elektrodeledningen: 1,3 m (4,27 fod) |

Specifikationer for 9146 lithiumbatteri

<table>
<thead>
<tr>
<th>Udgangsspænding</th>
<th>12 VDC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batterierne er ikke genopladelige</td>
<td></td>
</tr>
<tr>
<td>Lithium-indhold: 9,2 g (0,32 oz)</td>
<td></td>
</tr>
<tr>
<td>Konsulter lokale love og regler vedrørende bortskaffelse.</td>
<td></td>
</tr>
<tr>
<td>Estimeret lagerholdbarhed (fra produktionsdatoen): 5 år</td>
<td></td>
</tr>
<tr>
<td>Typiske stød: 290 stød</td>
<td></td>
</tr>
<tr>
<td>Bemærk: Batteriets driftslevetid afhænger af batteritype, enhedens indstillinger, faktisk brug og miljømæssige faktorer. Batteriet blev testet med en G3 AED-enhed med standard stemmemeddelelsessæt og HLR indstillet til 60 sekunder.</td>
<td></td>
</tr>
</tbody>
</table>

Opbevaring og transport

<table>
<thead>
<tr>
<th>Konfiguration</th>
<th>Transport</th>
<th>Opbevaring</th>
<th>Anvendelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emballeret system (emballage, enhed, elektroder, batteri)</td>
<td>5 dage ved -30 °C til +65 °C</td>
<td>2 år ved 0-50 °C (elektrodelevetid)</td>
<td>Ej tilg.</td>
</tr>
<tr>
<td>Uemballeret system uden tilbehør</td>
<td>5 dage ved -30 °C til +65 °C</td>
<td>10 år ved 0-50 °C</td>
<td>Ej tilg.</td>
</tr>
<tr>
<td>Uemballeret system med tilbehør (batterier og elektroder)</td>
<td>5 dage ved -30 °C til +65 °C</td>
<td>2 år ved 0-50 °C (elektrodelevetid)</td>
<td>2 år ved 0-50 °C (elektrodelevetid)</td>
</tr>
<tr>
<td>Elektroder (emballerede)</td>
<td>5 dage ved -30 °C til +65 °C</td>
<td>2 år ved 0-50 °C (elektrodelevetid)</td>
<td>Ej tilg.</td>
</tr>
<tr>
<td>Batteri (emballeret eller uemballeret)</td>
<td>5 dage ved -30 °C til +65 °C</td>
<td>5 år ved 20-30°C</td>
<td>4 år ved 0-50 °C</td>
</tr>
</tbody>
</table>
Tekniske data

Tabel 6-1: Parametre (fortsat)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Oplysninger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Opladningstider for batterier og kondensator</td>
<td>Når AED’en har leveret 15 stød på 300 VE, er et nyt batteri typisk 10 sekunder om at oplade AED’en til maks. energi. Et batteri med reduceret kapacitet vil være længere tid om at oplade AED’en.</td>
</tr>
</tbody>
</table>
Tabel 6-1: Parametre (fortsat)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Oplysninger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sikkerhed og ydelse</td>
<td>Model 9790</td>
</tr>
<tr>
<td></td>
<td>AED'en er konstrueret og fremstillet til at overholde de højeste standarder for sikkerhed og ydeevne, inklusive elektromagnetisk kompatibilitet (EMC). Model 9790 og elektroderne er i overensstemmelse med gældende krav i henhold til følgende:</td>
</tr>
<tr>
<td></td>
<td>CSA:</td>
</tr>
<tr>
<td></td>
<td>Elektrisk udstyr, konstruktion, sikkerhed og ydeevne:</td>
</tr>
<tr>
<td></td>
<td>IEC 60601-1</td>
</tr>
<tr>
<td></td>
<td>IEC 60601-2-4</td>
</tr>
<tr>
<td></td>
<td>Elektromagnetisk kompatibilitet (EMC):</td>
</tr>
<tr>
<td></td>
<td>IEC 60601-1-2</td>
</tr>
<tr>
<td></td>
<td>IEC 60601-2-4</td>
</tr>
<tr>
<td>Emissioner</td>
<td>CISPR 11-2016</td>
</tr>
<tr>
<td></td>
<td>RTCA DO-160G:2010, afsnit 20 og afsnit 21, Kategori M</td>
</tr>
<tr>
<td>Parametre</td>
<td>Oplysninger</td>
</tr>
<tr>
<td>--------------------</td>
<td>---</td>
</tr>
<tr>
<td>Immunitet</td>
<td>EM</td>
</tr>
<tr>
<td></td>
<td>IEC 61000-4-3, niveau X, (20 V/m)</td>
</tr>
<tr>
<td></td>
<td>IEC 60601-2-4 (20 V/m)</td>
</tr>
<tr>
<td></td>
<td>Magnetisk</td>
</tr>
<tr>
<td></td>
<td>IEC 61000-4-8</td>
</tr>
<tr>
<td></td>
<td>IEC 60601-2-4</td>
</tr>
<tr>
<td></td>
<td>ESD</td>
</tr>
<tr>
<td></td>
<td>IEC 61000-4-2</td>
</tr>
<tr>
<td></td>
<td>IEC 60601-2-4</td>
</tr>
<tr>
<td></td>
<td>6 kV kontaktafladning, 8 kV luftafladning</td>
</tr>
<tr>
<td>Miljøforhold</td>
<td>Frit fald: 1 meter i henhold til 60068-2-31:2009,</td>
</tr>
<tr>
<td></td>
<td>Miljøprøvning - Del 2-31: Test - Test Ec: Mekanisk stød i forbindelse med</td>
</tr>
<tr>
<td></td>
<td>hårdhændet behandling, primært til testudstyr.</td>
</tr>
<tr>
<td></td>
<td>vejledning: Mekanisk stød.</td>
</tr>
<tr>
<td></td>
<td>Vibration (vilkårlig): IEC 60068-2-64:2008,</td>
</tr>
<tr>
<td></td>
<td>Miljøprøvning - Del 2-64: Test - Test Fh: Vibration, vilkårligt bredbånd</td>
</tr>
<tr>
<td></td>
<td>og vejledning.</td>
</tr>
<tr>
<td></td>
<td>Vibration (sinus): IEC 60068-2-6:2007, Miljøprøvning - Del 2-6: Test -</td>
</tr>
<tr>
<td></td>
<td>Test Fc: Vibration (sinusformet).</td>
</tr>
<tr>
<td></td>
<td>Indkapslingsbeskyttelse: IEC 60529, IP24</td>
</tr>
<tr>
<td></td>
<td>DO-160G Sec 8, kategori U-fly og helikoptere</td>
</tr>
<tr>
<td>Fragt- og transportforhold</td>
<td>ISTA-procedure 2A</td>
</tr>
</tbody>
</table>
Tabel 6-1: Parametre (fortsat)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Oplysninger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ydelse af RHYTHMx® EKG-analyse</td>
<td>AED RHYTHMx EKG-analysesystemet analyserer patientens EKG og informerer dig, når AED’en detekterer en stødbar eller ikke-stødbar rytmeklassifikation. Dette system gør det muligt for personer, der ikke er uddannet i fortolkning af EKG-rytmer, at give defibrilleringsbehandling til personer med hjertestop. Med et nyt batteri, efter at AED’en har leveret 15 stød på 300 VE, er den maksimale tid fra rytmeanalyse starter, til AED’en er klar til at afgive stød, 17 sekunder.</td>
</tr>
<tr>
<td>Hjerterytmer, som bruges til at afprøve rytmedetektionssystemet til Powerheart® G3 AED’er</td>
<td>Stødbar rytmeklassifikation – VF: Opfylder kravet i henhold til IEC 60601-2-4 og AHA-anbefalingen mht. følsomhed på >90 %
Automatic External Defibrillators for Public Access Defibrillation: Recommendations for Specifying and Reporting Arrhythmia Analysis Algorithm Performance, Incorporating New Waveforms and Enhancing Safety, AHA AED Task Force and approved by the AHA Science Advisory and Coordinating Committee. Circulation, 1997(95), pp 1677-1682
Stødbar rytmeklassifikation – VT: Opfylder kravet i henhold til IEC 60601-2-4 og AHA-anbefalingen mht. følsomhed på >75 %
Ikke-stødbar rytmeklassifikation – NSR: Opfylder kravet i henhold til IEC 60601-2-4 (>95 %) og AHA-anbefalingen (>99 %) mht. specificitet.
Ikke-stødbar – Asystoli: Opfylder kravet i henhold til IEC 60601-2-4 og AHA-anbefalingen mht. specificitet på >95 %
Ikke-stødbar: Opfylder kravet i henhold til IEC 60601-2-4 og AHA's anbefaling mht. specificitet - alle andre rytmeklassifikationer på >95 %
For yderligere information bedes du kontakte Cardiac Science for at få hvidbøgerne:
P/N 112-2013-005 (instruktioner i pædiatrisk defibrillering)
P/N 110-0033-001 (RHYTHMx-hvidbog)
P/N MKT-11081-01 (STAR bifasisk-hvidbog)</td>
</tr>
</tbody>
</table>
Energiværdier med Cardiac Science forudinstallerede (voksen) elektroder og STAR® bifasisk kurve

Kurven, der genereres af AED'en, er en bifasisk trunkeret eksponentiel kurve. Den følgende graf viser kurvens spænding som funktion af tid, når AED'en er forbundet til en 50 Ohm resistiv belastning med forudinstallerede elektroder.

Højenergikurve med 50 ohm resistiv belastning – Høj variabel energi/50 ohm

Den bifasede trunkerede eksponentielle kurve (BTE) anvender variabel energi. Den faktiske leverede energi afhænger af patientens impedans, og enheden afgiver et stød, når impedansen er 25-180 Ohm. Energien afgives i tre forskellige niveauer, som betegnes ultralav variabel energi, lav variabel energi og høj variabel energi som vist i tabellerne over kurver på de følgende sider.
Tekniske data

Tabel 6-2: Ultralav variabel energi (150 VE) Powerheart® G3-kurve

<table>
<thead>
<tr>
<th>Patientens impedans (Ohm)</th>
<th>Fase 1</th>
<th>Fase 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Strøm-styrke* (A)</td>
<td>Spænding* (Volt)</td>
</tr>
<tr>
<td>25</td>
<td>56</td>
<td>1393</td>
</tr>
<tr>
<td>50</td>
<td>28</td>
<td>1420</td>
</tr>
<tr>
<td>75</td>
<td>19</td>
<td>1430</td>
</tr>
<tr>
<td>100</td>
<td>14</td>
<td>1434</td>
</tr>
<tr>
<td>125</td>
<td>11</td>
<td>1437</td>
</tr>
<tr>
<td>150</td>
<td>10</td>
<td>1439</td>
</tr>
<tr>
<td>175</td>
<td>8</td>
<td>1441</td>
</tr>
</tbody>
</table>

Tabel 6-3: Lav variabel energi (200 VE) Powerheart® G3-kurve

<table>
<thead>
<tr>
<th>Patientens impedans (Ohm)</th>
<th>Fase 1</th>
<th>Fase 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Strøm-styrke* (A)</td>
<td>Spænding* (Volt)</td>
</tr>
<tr>
<td>25</td>
<td>64</td>
<td>1609</td>
</tr>
<tr>
<td>50</td>
<td>33</td>
<td>1640</td>
</tr>
<tr>
<td>75</td>
<td>22</td>
<td>1651</td>
</tr>
<tr>
<td>100</td>
<td>17</td>
<td>1656</td>
</tr>
<tr>
<td>125</td>
<td>13</td>
<td>1660</td>
</tr>
<tr>
<td>150</td>
<td>11</td>
<td>1662</td>
</tr>
<tr>
<td>175</td>
<td>10</td>
<td>1663</td>
</tr>
</tbody>
</table>
Tabel 6-4: Høj variabel energi Powerheart® G3-kurve

<table>
<thead>
<tr>
<th>Patientens impedans (Ohm)</th>
<th>Fase 1</th>
<th>Fase 2</th>
<th>Nominel energi** (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Strømstyrke* (A)</td>
<td>Spænding* (Volt)</td>
<td>Varighed* (MS)</td>
</tr>
<tr>
<td>25</td>
<td>75</td>
<td>1869</td>
<td>3,3</td>
</tr>
<tr>
<td>50</td>
<td>38</td>
<td>1906</td>
<td>4,5</td>
</tr>
<tr>
<td>75</td>
<td>26</td>
<td>1918</td>
<td>5,8</td>
</tr>
<tr>
<td>100</td>
<td>19</td>
<td>1925</td>
<td>7</td>
</tr>
<tr>
<td>125</td>
<td>15</td>
<td>1928</td>
<td>8,3</td>
</tr>
<tr>
<td>150</td>
<td>13</td>
<td>1931</td>
<td>9,5</td>
</tr>
<tr>
<td>175</td>
<td>11</td>
<td>1933</td>
<td>10,8</td>
</tr>
</tbody>
</table>

* Alle værdier er typiske.

** Faktisk leveret energi +/- 15 %.
Dæmpede energiværdier med pædiatriske elektroder fra Cardiac Science og STAR bifasisk kurve

Kurven, der genereres af AED'en, er en bifasisk trunkeret eksponentiel kurve. Den følgende graf viser kurvens spænding som funktion af tid, når AED'en er forbundet til en 50 Ohm resistiv belastning med pædiatriske elektroder.

Typisk pædiatrisk kurve: Lav energi (200 VE) 50 ohm patientimpedans

Den bifasede trunkerede eksponentielle kurve (BTE) anvender variabel energi. Den faktiske leverede energi afhænger af patientens impedans, og enheden afgiver et stød, når impedansen er 25-180 Ohm. Energien afgives i tre forskellige niveauer, som betegnes ultralav variabel energi, lav variabel energi og høj variabel energi som vist i tabellerne over kurver på de følgende sider.
Tekniske data

Tabel 6-5: Første stød – Ultralav energi (150 VE) Powerheart® G3 Pædiatrisk kurve

<table>
<thead>
<tr>
<th>Patientens impedans (Ohm)</th>
<th>Fase 1</th>
<th>Fase 2</th>
<th>Nominel energi** (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spænding* (Volt)</td>
<td>Varighed* (MS)</td>
<td>Spænding* (Volt)</td>
</tr>
<tr>
<td>25</td>
<td>370</td>
<td>6,1</td>
<td>258</td>
</tr>
<tr>
<td>50</td>
<td>550</td>
<td>7,3</td>
<td>366</td>
</tr>
<tr>
<td>75</td>
<td>640</td>
<td>8,6</td>
<td>417</td>
</tr>
<tr>
<td>100</td>
<td>705</td>
<td>9,8</td>
<td>442</td>
</tr>
<tr>
<td>125</td>
<td>770</td>
<td>11,1</td>
<td>453</td>
</tr>
</tbody>
</table>

Tabel 6-6: Første stød - Lav energi (200 VE) Powerheart® G3 Pædiatrisk kurve

<table>
<thead>
<tr>
<th>Patientens impedans (Ohm)</th>
<th>Fase 1</th>
<th>Fase 2</th>
<th>Nominel energi** (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spænding* (Volt)</td>
<td>Varighed* (MS)</td>
<td>Spænding* (Volt)</td>
</tr>
<tr>
<td>25</td>
<td>430</td>
<td>6,1</td>
<td>298</td>
</tr>
<tr>
<td>50</td>
<td>630</td>
<td>7,3</td>
<td>422</td>
</tr>
<tr>
<td>75</td>
<td>745</td>
<td>8,6</td>
<td>482</td>
</tr>
<tr>
<td>100</td>
<td>790</td>
<td>9,8</td>
<td>511</td>
</tr>
<tr>
<td>125</td>
<td>855</td>
<td>11,1</td>
<td>524</td>
</tr>
</tbody>
</table>

Tabel 6-7: Andet og efterfølgende stød – Ultralav energi (150 VE) Powerheart® G3 Pædiatrisk kurve

<table>
<thead>
<tr>
<th>Patientens impedans (Ohm)</th>
<th>Fase 1</th>
<th>Fase 2</th>
<th>Nominel energi** (J)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spænding* (Volt)</td>
<td>Varighed* (MS)</td>
<td>Spænding* (Volt)</td>
</tr>
<tr>
<td>25</td>
<td>370</td>
<td>5,8</td>
<td>270</td>
</tr>
<tr>
<td>50</td>
<td>550</td>
<td>6,5</td>
<td>390</td>
</tr>
<tr>
<td>75</td>
<td>640</td>
<td>7,0</td>
<td>470</td>
</tr>
<tr>
<td>100</td>
<td>705</td>
<td>7,4</td>
<td>510</td>
</tr>
<tr>
<td>125</td>
<td>770</td>
<td>7,8</td>
<td>545</td>
</tr>
</tbody>
</table>
Tabel 6-8: Andet og efterfølgende stød – Lav energi (200 VE)
Powerheart® G3 Pædiatrisk kurve

<table>
<thead>
<tr>
<th>Patientens impedans (Ohm)</th>
<th>Fase 1</th>
<th>Fase 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spænding* (Volt)</td>
<td>Varighed* (MS)</td>
</tr>
<tr>
<td>25</td>
<td>430</td>
<td>5,8</td>
</tr>
<tr>
<td>50</td>
<td>630</td>
<td>6,5</td>
</tr>
<tr>
<td>75</td>
<td>745</td>
<td>7,0</td>
</tr>
<tr>
<td>100</td>
<td>790</td>
<td>7,4</td>
</tr>
<tr>
<td>125</td>
<td>855</td>
<td>7,8</td>
</tr>
</tbody>
</table>

* Alle værdier er typiske.

** Faktisk leveret energi +/- 15 %.

Tabel 6-9: Andet og efterfølgende stød – Høj energi (300 VE)
Powerheart® G3 Pædiatrisk kurve

<table>
<thead>
<tr>
<th>Patientens impedans (Ohm)</th>
<th>Fase 1</th>
<th>Fase 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Spænding* (Volt)</td>
<td>Varighed* (MS)</td>
</tr>
<tr>
<td>25</td>
<td>500</td>
<td>5,8</td>
</tr>
<tr>
<td>50</td>
<td>700</td>
<td>6,5</td>
</tr>
<tr>
<td>75</td>
<td>820</td>
<td>7,0</td>
</tr>
<tr>
<td>100</td>
<td>920</td>
<td>7,4</td>
</tr>
<tr>
<td>125</td>
<td>960</td>
<td>7,8</td>
</tr>
</tbody>
</table>

* Alle værdier er typiske.

** Faktisk leveret energi +/- 15 %.